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LE"J3R TO THE EDlTOR 

Photon statistics of optical frequency up-conversion with 
stochastic pumping 

S Kryszewski and J Chrostowski 
Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw, 
Poland 

Received 19 July 1977 

Abstract. The frequency up-conversion process with stochastic coupling function is 
considered. It is shown that the total photon number increases with time. The antibunch- 
ing effect (g"'< 1) is predicted regardless of the mean photon numbers available in the 
process. 

Parameteric frequency conversion has recently received much attention. The effective 
Hamiltonian describing that phenomenon has the form 

H = A ~ , a ~ a + A w ~ ~ b + h { g ( t ) e x p [ i ( o , - w ~ ) t ] a b + + ~ c )  (1) 

where U,, at, a, Wb, bt, b, denote the frequencies, creation and annihilation operators 
for modes A and B respectively. It is worth noting that in frequency conversion three 
electromagnetic modes are coupled. However, in the derivation of Hamiltonian (1) 
one uses the well known parametric approximation (Tucker and Walls 1969b), thus 
reducing the problem to the two-mode interaction. In Tucker and Walls (1969a, b) 
the coupling function g ( t )  is taken to be constant. Lu (1973) assumes g ( t )  to be the 
ordinary time function. Crosignani et a1 (1971) consider g ( t )  to be a stochastic 
process. They construct the Fokker-Planck equation for the P-representation of the 
appropriate density operators and find its statistical moments. 

In this Letter we assume that the coupling between modes A and B is described by 
the stochastic function of time g ( t ) .  We adopt an entirely different approach which 
seems to be more general than that presented by Crosignani et al, because we can treat 
arbitrary quantum states which might not possess the P-representation. 

The stochastic character of the function g ( t )  may have two sources: (i) the fluctua- 
tions of the classically treated amplitude of the pumping mode; (ii) the fluctuations of 
the non-linear polarisability of the medium in which the frequency conversion occurs. 
We assume that the function g ( t )  describes small fluctuations around its (time- 
independent) mean value s, i.e. g ( t ) = g + E g l ( f ) ,  where E is a small parameter and 
g l ( t )  is a stochastic stationary Gaussian process with mean value and correlation 
function: ( g l ( t ) ) s  = 0; (gl*( t )gl( t ' )>,  = 2DS(t - r ' )  respectively, and with other second- 
order moments vanishing. 

The Hamiltonian (1) does not include damping effects, therefore we add the 
phenomenological damping terms to the Heisenberg equations of motion for the 
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annihilation operators. Thus we obtain 

d 
--a(t) = -iw,a(t)-fra(t)- ig*(t) exp[-i(w, - Wb)f]b(f) 
dt 

For simplicity we assume the same damping constants for both modes. One should 
note that our considerations are valid for times t << l/r, so we take damping to be 
small. Equations (2) are coupled and the stochastic character of the function g(t) does 
not allow us to find the exact solution. Therefore we adopt the perturbative approach 
looking for the solution of the form 

i.e. we retain only terms in the first order in the parameter E. The unperturbed 
solution obtained by putting g(t) = in equations (3) reads 

a(o)(t) = exp(-iw,t - fr t ) (ao cos K t  + e-’”bo sin K t )  

b(o)(t) = exp(-iwbt -+rt)(bo cos K t  - e+i+ao sin K f )  

where a. and bo are the initial annihilation operators for modes A and B, and where 
K = IS\, eiJ’ = ig/K. The first-order corrections are given by 

r f  

a l ( t ) =  J dt‘[-igl(t’) e-’” sin[rc(t- t’)] exp[-iwa(t- t’)]~(~,(t’) 
0 

-ig?(t’)  cos[^ (t - t’)] exp[-i(w,t - wbt’)]b(o,(t’)l 

b l ( f ) =  lof d’tf[ig?(ff)ei’ sin[~(t-f’)] exp[-iwb(f -t’)]b(o)(t’) 

-igI(r’) COS[K(~- t’)] e x p [ - i ( w ~ t - w , t ’ ) ] ~ ( ~ ) ( t ‘ ) ] .  (5b) 

It is necessary to emphasise that the corrections are not damped because we neglected 
the small damping of the small corrections. The constant K gives us the time scale of 
the process under consideration; we assume that damping and stochastic perturbation 
are small, i.e. 2 0 e 2 / ~ ,  r / K < <  I. These assumptions allow us to take only the first- 
order approximation (3) and neglect the damping of the corrections. Equations 
(3)-(5) give the time evolution of the amplitudes of the modes A and B. 

In order to study the statistical properties of modes A and B we have to specify the 
initial state of the system. We assume modes A and B to be initially independent and 
described by the density operator 

P (0) = PB @)IO>A A(OI 

where IO)A is the vacuum state for mode A and p ~ ( 0 )  is an arbitrary density operator 
for mode B. Thus mode A is generated during the process and we focus our attention 
mainly on its properties. 
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The calculation of the first-order coherence functions is rather lengthy but 
straightforward. Using (3)-(5) one gets (for tl > t 2 )  

J ( t l ,  t2, t3 )  = 4r r3 dt' e-rr' COS[K(4tr- t l -  t z ) ] .  
JO 

It is easily seen that the coherence functions are the sums of the unperturbed function 
and some correction due to the stochastic perturbation. 

The average photon numbers ((Na(t)))s and ((Nb(f)))s can be obtained from (6) and 
(7) respectively by putting tl = t2 = t. The unperturbed terms give the well known 
energy oscillations between the two modes, while the perturbed terms describe the 
effect of injection of photons from the pump mode. One can show that for t > O  the 
number of photons in each of the modes is never equal to zero. 

The injection of photons is seen most clearly when the total number of photons is 
considered. From (6), (7) we obtain 

((N, (t)+Nb(t)))s = f i b [ 2 0 e 2 / r -  e - r t ( 2 ~ e 2 / r  - I)] (8) 

and hence ((N,(t)+ Nb(t)))s increases in time provided the condition 

2 0 2  >I" (9) 

is satisfied. Equation (9) states that when the stochastic perturbation dominates over 
damping then the photon number increases in time (figure 1). When the coupling 
g( t )  = constant, as discussed by Tucker and Walls (1969a, b) the total photon number 
operator commutes with the Hamiltonian and hence N,(t)  + Nb(t) is the constant of 
motion. In our case that commutation relation does not hold due to the stochastic 
character of the coupling function g(t). Equation (8) resembles Brownian motion 
when r tends to zero. Then we have 

As in the case of Brownian motion the linear increase in time of the quantities 
quadratic in the field amplitudes (the analogues of displacement of the Brownian 
particle) is observed. 

Analogous calculations can be performed t o  obtain the second-order coherence 
function Gkz'(t1, t 2 ,  tl, t 2 )  measured in the Hanbury-Brown and Twiss experiment (see 
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r f  

Figure 1. Time dependence of mean photon numbers (normalised to unity) in frequency 
up-conversion process. The full curve corresponds to the generated mode A, the broken 
curve to mode B. The chain curve represents the total photon number ((Na(t)+Nb(r)))s. 
r / ~  =0.01 and De2/r= 1. 

e.g. Loudon 1973). Then we have (for tl > t z )  

Gi'(tl, f2 ,  tl, t 2 )  

= 

= (botbotbobo>[~~l((N~(rl)))r e+Z sin' ~ t 2  

+A~L~((N~(C~)))~ eWrr1 sin' Kt1 - e-r(tl+Q sin2 K t t  sin' K C ~  

+(DE2/r) sin(2rctl) sin(2~t2) e+crl+'z)(l - (10) 
For tl < t2 the indices have to be interchanged. The term (bib&obo> depends on the 
initial statistics of the mode B. Formula (10) enables us to find the second-order 
degree of coherence, defined as 

gz)(tl, t 2 ,  t i ,  t2 )  = IGkZ'(t1, t2, t l ,  ~ 2 ) I ( ( ~ = ( f 1 ) ~ ~ ' ( ( N = ( f 2 ) ) ) ~ ' .  

Figure 2 shows the dependence of gk" on tl with f2  fixed. For initially coherent mode 
B (b~b&bo)(b&,)-' = 1 and gg'(t1, t2, t l ,  t 2 )  can take on values smaller than unity. 

Figwe 2. The dependence of gf' on time tl while tz is fixed. r / K  =0.01, De2/I'= 1, 
Kt2 = 0.2. 
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Hence the effect of antibunching occurs. It is necessary to stress that there is no 
restriction on the number of photons in any mode, therefore experimental observation 
of antibunching is not limited to exceedingly weak beams. We wish to emphasise that 
even when the state of the mode B differs slightly from the coherent state it is still 
possible to observe antibunching. 

The authors wish to thank Professor B Karczewski for his kind interest and valuable 
comments. 
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